Окружность на ЕГЭ и ОГЭ — сложно. Все потому, что эта фигура не похожа на остальные: у неё нет углов и сторон, зато есть совсем другие элементы. В этой статье мы подробно поговорим про элементы окружности, углы, отрезки и прямые, которые с ней связаны, а также обсудим длину окружности и площадь круга. Ну и разберем основные задания ЕГЭ и ОГЭ, конечно же!
В этой статье:
Углы у окружности на ЕГЭ и ОГЭОтрезки и прямые в окружности на ЕГЭ и ОГЭ4 теоремы про окружность в ЕГЭ и ОГЭДлина окружности и площадь кругаЧто нужно иметь в виду для ЕГЭ и ОГЭДля начала давайте разберёмся, что же такое окружность. Окружность — это замкнутая линия, состоящая из множества точек, которые равноудалены от центра окружности. Основной элемент окружности — это радиус, он соединяет центр с любой точкой на окружности.
Углы у окружности на ЕГЭ и ОГЭ
У окружности есть 2 вида углов:
- вписанные (их вершина лежит на окружности);
- центральные (тут всё понятно из названия, у них вершина в центре окружности).
Расположение и свойства углов в окружности можно увидеть на схеме ниже:
Давайте отработаем это на практике:
Решение
Можно заметить, что угол АСВ — вписанный и опирается на дугу АВ, соответственно, центральный угол АОD, опирающийся на ту же дугу будет в 2 раза больше, то есть 70 градусов. Теперь рассмотрим развёрнутый угол ВОD, он состоит из углов АОВ и АОD. Градусная мера развёрнутого угла 180 градусов, следовательно искомый угол АОD будет равен 180 – 70 = 110 градусов.
Отрезки и прямые в окружности на ЕГЭ и ОГЭ
Теперь рассмотрим отрезки и прямые в окружности. Приготовьтесь, их будет много!
Есть хорда — это отрезок, который соединяет 2 любые точки на окружности. Если хорда пройдёт через центр окружности, то она превратится в диаметр. Кстати, если внимательно посмотреть, то можно увидеть, что диаметр — это 2 радиуса!
Теперь продлим хорду в обе стороны за пределы окружности, получим прямую, которая переСЕКает нашу окружность, отсюда и её название — секущая. Можно заметить, что секущая имеет 2 общих точки пересечения с окружностью. А ещё мы можем провести прямую так, чтобы она имела с окружностью только 1 точку пересечения, то есть касалась её, такая прямая будет называться касательная.
Подробнее со свойствами касательной и секущей можно ознакомиться на рисунке:
Рассмотрим на примерах заданий про окружность в ЕГЭ и ОГЭ:
4 теоремы про окружность в ЕГЭ и ОГЭ
Теперь я предлагаю ознакомиться с теоремами, которые появляются в комбинациях различных прямых и отрезков в окружности.
Теорема № 1: теория и задания из ЕГЭ и ОГЭ
Первая теорема про хорду и касательную звучит так:
Угол между касательной и хордой равен половине дуге, которую стягивает хорда.
Подробнее с выведением вы можете ознакомиться на рисунке:
Однако хочу обратить ваше внимание, что если вы просто запомните формулировку, то многие задачи на окружность в ЕГЭ и ОГЭ покажутся вам супер-простыми и будут решаться в 1 действие. Давайте в этом убедимся:
Вот так просто и быстро в 1 действие мы справились с задачей. Правда здорово?!
Теорема № 2: теория и задания из ЕГЭ и ОГЭ
А теперь давайте посмотрим на одну из моих самых любимых теорем. А любимая она, потому что без неё некоторые задачи кажутся практически нерешаемыми, а с ней их можно решить быстро и просто! Звучит она так:
Квадрат касательной равен произведению секущей на её внешнюю часть.
Я советую запоминать именно словесную формулировку, так как чертежи и буквы на них могут быть разными, и есть риск всё перепутать.
Наглядно познакомиться с теоремой можно на рисунке ниже:
И конечно же давайте отработаем на практике!
Если бы мы не знали ту теорему, которую только что прошли, то было бы много версий, как можно решить задачу. Кто-то начал бы строить радиус к касательной и рассматривать треугольники, а кто-то просто не стал бы решать, однако у нас есть формула: давайте её используем!
Решение:
Теорема № 3: теория и задания из ЕГЭ и ОГЭ
Если вы ещё не устали от теорем, то давайте познакомимся с ещё одной, которая связывает хорду с диаметром (радиусом).
Эта теорема интересна тем, что работает в обе стороны:
Конечно же я не могу оставить вас без тренировки, поэтому посмотрим на следующую задачу:
Теорема № 4: пересекающиеся хорды
Последнее, с чем я вас познакомлю в контексте прямых и отрезков в окружности будет свойство пересекающихся хорд:
Произведения отрезков пересекающихся хорд равны.
Для наглядности отрезки выделены разными цветами, так вам будет проще запомнить свойство.
А теперь отработаем его на практике:
Длина окружности и площадь круга
Вот мы и подошли с вами к самому интересному, формулам длины окружности и площади круга, давайте их запишем:
Эти формулы очень походы, в них есть двойка, число Pi и радиус, однако можно заметить, что у формулы длины окружности двойка слева, а у площади круга справа в степени.
Так как же их не путать? Очень просто: запомните, что вторая степень (или квадрат) должна быть у площади, значит двойка слева будет у длины.
Давайте это закрепим:
Вот так просто и быстро мы закрепили сразу обе формулы.
Как находить площадь и длину дуги сектора круга: задачи
А теперь перейдём к самому интересному — нахождению площади и длины дуги сектора круга. Многие ученики думаю, что это сложно, но на самом деле это не так. Я предлагаю записать 2 коротких алгоритма, с помощью которых вы сможете легко найти площадь или длину дуги сектора.
И конечно же давайте закрепим эти алгоритмы на практике:
Теперь вы умеете решать задания на поиск площади сектора. Согласитесь, что с алгоритмом всё намного понятнее и проще?
Что нужно иметь в виду для ЕГЭ и ОГЭ
На самом деле это всё, что я хотела вам рассказать в данной статье. Давайте ещё раз повторим, что вы узнали.
- Сначала мы познакомились с понятием окружность, потом посмотрели, какие бывают углы в окружности.
- Затем увидели множество отрезков и прямых в окружности, записали их свойства, а также несколько теорем с ними.
- В завершение мы поговорили про длину окружности, площадь круга, а также поиск площади и длины дуги сектора.
Самое ценное, что всю теорию мы закрепили на реальных заданиях из ОГЭ и ЕГЭ. Конечно, это далеко не всё, что вам может встретиться. Если вы хотите хорошо разбираться в окружности и в других темах, которые встречаются на экзаменах, записывайтесь на наши курсы подготовки к ОГЭ и ЕГЭ. На них мы подробно изучаем всю теорию, решаем много заданий, запоминаем удобные лайфхаки и решаем пробные экзамены, чтобы не стрессовать на реальном. Присоединяйтесь!